✍️
mathematical analysis
  • content
  • Mathematical Analysis 1
    • 1. Limits
    • 2. Continuity
    • 3. Differential calculus
    • 4. Integral
  • Mathematical Analysis 2
    • 5. Continuity of multivariate functions
    • 6. Differential calculus of multivariate functions
    • 7. Multiple integral
    • 8. Multivariate functions' surface
      • Line integral (3-dimension)
      • Surface integral (3-dimension)
      • field theory
    • 9. Differential form
  • Mathematical Analysis 3
    • 10. Series
    • 11. Improper integral
    • 12. Fourier analysis
    • 13. Special function
Powered by GitBook
On this page
  • Definition
  • surface integrals of the first kind

Was this helpful?

  1. Mathematical Analysis 2

8. Multivariate functions' surface

Previous7. Multiple integralNextLine integral (3-dimension)

Last updated 4 years ago

Was this helpful?

Definition

A surface of dimension kkk in Rn\mathbb{R}^{n}Rn is a subset S⊂RnS \subset \mathbb{R}^{n}S⊂Rn each point of which has a neighborhood in SSS homeomorphic to Rk\mathbb{R}^{k}Rk.

surface integrals of the first kind

Suppose that suppf⊂U\text{supp}f\subset Usuppf⊂U, (U,φ)(U,\varphi)(U,φ)is a local coordinate system, the surface integrals of the first kind function fff over SSS is defined as:

∫SfdV=∫φ−1(U)f∘φ(t)det⁡(⟨∂φ∂ti,∂φ∂tj⟩)dt1…dtk\int_{S} f \mathrm{d} V=\int_{\varphi^{-1}(U)} f \circ \varphi(t) \sqrt{\operatorname{det}\left(\left\langle\frac{\partial \varphi}{\partial t^{i}}, \frac{\partial \varphi}{\partial t^{j}}\right\rangle\right)} \mathrm{d} t^{1} \ldots \mathrm{d} t^{k}∫S​fdV=∫φ−1(U)​f∘φ(t)det(⟨∂ti∂φ​,∂tj∂φ​⟩)​dt1…dtk

■\blacksquare■