8. Multivariate functions' surface

Definition

A surface of dimension kk in Rn\mathbb{R}^{n} is a subset SRnS \subset \mathbb{R}^{n} each point of which has a neighborhood in SS homeomorphic to Rk\mathbb{R}^{k}.

surface integrals of the first kind

Suppose that suppfU\text{supp}f\subset U, (U,φ)(U,\varphi)is a local coordinate system, the surface integrals of the first kind function ff over SS is defined as:

SfdV=φ1(U)fφ(t)det(φti,φtj)dt1dtk\int_{S} f \mathrm{d} V=\int_{\varphi^{-1}(U)} f \circ \varphi(t) \sqrt{\operatorname{det}\left(\left\langle\frac{\partial \varphi}{\partial t^{i}}, \frac{\partial \varphi}{\partial t^{j}}\right\rangle\right)} \mathrm{d} t^{1} \ldots \mathrm{d} t^{k}

\blacksquare

Last updated

Was this helpful?