4. Integral

Antiderivative

Definition

In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function ff is a differentiable function FF whose derivative is equal to the original function ff.

Suppose F(x)=f(x)F'(x)=f(x), the notation is

f(x)dx=F(x)\int f(x)\mathrm dx=F(x)

So all the antiderivative of ff become a family set {F(x)+CCR}\{F(x)+C|C\in\mathbb R\}.

also the equation below is obviously.

df(x)dx=f(x)dx,F(x)dx=F(x)+c\mathrm d \int f(x) \mathrm{d} x=f(x) \mathrm{d} x, \quad \int F^{\prime}(x) \mathrm{d} x=F(x)+c

Theorem: Integration by parts

u(x)v(x)dx=u(x)v(x)u(x)v(x)dx\int u(x)v'(x)\,\mathrm dx=u(x)v(x)-\int u'(x)v(x)\,\mathrm dx

Example: Wallis product

the Wallis product for π\pi, published in 1656 by John Wallis states that

π2=n=14n24n21=n=1(2n2n12n2n+1)=(2123)(4345)(6567)(8789)   \begin{aligned}{\frac {\pi }{2}}&=\prod _{n=1}^{\infty }{\frac {4n^{2}}{4n^{2}-1}}=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)\\[6pt]&={\Big (}{\frac {2}{1}}\cdot {\frac {2}{3}}{\Big )}\cdot {\Big (}{\frac {4}{3}}\cdot {\frac {4}{5}}{\Big )}\cdot {\Big (}{\frac {6}{5}}\cdot {\frac {6}{7}}{\Big )}\cdot {\Big (}{\frac {8}{7}}\cdot {\frac {8}{9}}{\Big )}\cdot \;\cdots \\\end{aligned}

Prove:

I(n)=0πsinnxdx=0πudv=uvx=0x=π0πvdu=sinn1xcosxx=0x=π0πcosx(n1)sinn2xcosxdx=0(n1)0πcos2xsinn2xdx,n>1=(n1)0π(1sin2x)sinn2xdx=(n1)0πsinn2xdx(n1)0πsinnxdx=(n1)I(n2)(n1)I(n)=n1nI(n2)I(n)I(n2)=n1nI(2n1)I(2n+1)=2n+12n\begin{align} I(n) &= \int_0^\pi \sin^nx\,\mathrm dx=\int_0^\pi -u \,\mathrm dv = -uv |_{x=0}^{x=\pi}-\int_0^\pi -v \,\mathrm du \\ {} &= -\sin^{n-1}x\cos x |_{x=0}^{x=\pi} - \int_0^\pi - \cos x(n-1) \sin^{n-2}x \cos x \,\mathrm dx \\ {} &= 0 - (n-1) \int_0^\pi -\cos^2x \sin^{n-2}x\,\mathrm dx, n > 1 \\ {} &= (n - 1) \int_0^\pi (1-\sin^2 x) \sin^{n-2}x \,\mathrm dx \\ {} &= (n - 1) \int_0^\pi \sin^{n-2}x\,\mathrm dx - (n - 1) \int_0^\pi \sin^{n}x \,\mathrm dx \\ {} &= (n - 1) I(n-2)-(n-1) I(n) \\ {} &= \frac{n-1}{n} I(n-2) \\ \Rightarrow \frac{I(n)}{I(n-2)} &= \frac{n-1}{n} \\ \Rightarrow \frac{I(2n-1)}{I(2n+1)} &=\frac{2n+1}{2n} \end{align}

so that:

0π2sinnxdx={π2(2n1)!!(2n)!!n is even(2n1)!!(2n)!!n is odd\int_0^{\frac{\pi} {2}} \sin^nx\,\mathrm dx = \left\{\begin{matrix}\frac{\pi}{2}\frac{(2n-1)!!}{(2n)!!}& \text{n is even} \\ \\ \frac{(2n-1)!!}{(2n)!!}&\text{n is odd} \end{matrix} \right.

so that:

limnI(2n)I(2n+1)=1limnI(2n)I(2n+1)=π2limnk=1n(2k12k2k+12k)=1π2=k=1(2k2k12k2k+1)=212343456567\begin{aligned} \Rightarrow& \lim _{n \rightarrow \infty} \frac{I(2 n)}{I(2 n+1)}=1 \\ &\lim _{n \rightarrow \infty} \frac{I(2 n)}{I(2 n+1)}=\frac{\pi}{2} \lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(\frac{2 k-1}{2 k} \cdot \frac{2 k+1}{2 k}\right)=1 \\ \Rightarrow& \frac{\pi}{2}=\prod_{k=1}^{\infty}\left(\frac{2 k}{2 k-1} \cdot \frac{2 k}{2 k+1}\right)=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots \end{aligned}

Simplify the Polynomial and Integral

If Q(z)=(zz1)k1(zzp)kpQ(z)=\left(z-z{1}\right)^{k{1}} \cdots\left(z-z{p}\right)^{k{p}} and P(z)Q(z)\frac{P(z)}{Q(z)} is a proper fraction, there exists a unique representation of the fraction P(z)Q(z)\frac{P(z)}{Q(z)} in the form

P(z)Q(z)=j=1p(k=1kjajk(zzj)k)\frac{P(z)}{Q(z)}=\sum_{j=1}^{p}\left(\sum_{k=1}^{k_{j}} \frac{a_{j k}}{\left(z-z_{j}\right)^{k}}\right)

and if P(x)P(x) and Q(x)Q(x) are polynomials with real coefficients and

Q(x)=(xx1)k1(xxl)kl(x2+p1x+q1)m1(x2+pnx+qn)mnQ(x)=\left(x-x_{1}\right)^{k_{1}} \cdots\left(x-x_{l}\right)^{k_{l}}\left(x^{2}+p_{1} x+q_{1}\right)^{m_{1}} \cdots\left(x^{2}+p_{n} x+q_{n}\right)^{m_{n}}

there exists a unique representation of the proper fraction P(x)Q(x)\frac{P(x)}{Q(x)} in the form

P(x)Q(x)=j=1l(k=1kjajk(xxj)k)+j=1n(k=1mjbjkx+cjk(x2+pjx+qj)k)\frac{P(x)}{Q(x)}=\sum_{j=1}^{l}\left(\sum_{k=1}^{k_{j}} \frac{a_{j k}}{\left(x-x_{j}\right)^{k}}\right)+\sum_{j=1}^{n}\left(\sum_{k=1}^{m_{j}} \frac{b_{j k} x+c_{j k}}{\left(x^{2}+p_{j} x+q_{j}\right)^{k}}\right)

where ajk,bjk,a_{jk}, b_{jk}, and cjkc_{j k} are real numbers.

and with these formulas below:

dx(xa)m={1(m1)(xa)m1+c,m1logxa+c,m=12xdx(x2+a2)m=d(x2+a2)(x2+a2)m={1(m1)(x2+a2)m1+c,m1log(x2+a2)+c,m=1dx(x2+a2)m=x(x2+a2)m+2mx2dx(x2+a2)m+1=x(x2+a2)m+2mdx(x2+a2)m2ma2dx(x2+a2)m+1\begin{aligned} \int \frac{\mathrm{d} x}{(x-a)^{m}}&=\left\{\begin{array}{ll} -\frac{1}{(m-1)(x-a)^{m-1}}+c, & m \neq 1 \\ \\ \log |x-a|+c, & m=1 \end{array}\right. \\ \\ \int \frac{2 x \mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m}}&=\int \frac{\mathrm{d}\left(x^{2}+a^{2}\right)}{\left(x^{2}+a^{2}\right)^{m}}=\left\{\begin{array}{c} -\frac{1}{(m-1)\left(x^{2}+a^{2}\right)^{m-1}}+c, \quad &m \neq 1 \\ \\ \log \left(x^{2}+a^{2}\right)+c, \quad &m=1 \end{array}\right. \\\\ \int \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m}}&=\frac{x}{\left(x^{2}+a^{2}\right)^{m}}+\int \frac{2 m x^{2} \mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m+1}} \\&=\frac{x}{\left(x^{2}+a^{2}\right)^{m}}+\int \frac{2 m \mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m}}-2 m a^{2} \int \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m+1}} \end{aligned}

And from that we get the recursion:

dx(x2+a2)m+1=12ma2x(x2+a2)m+2m12ma2dx(x2+a2)m\int \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m+1}}=\frac{1}{2 m a^{2}} \frac{x}{\left(x^{2}+a^{2}\right)^{m}}+\frac{2 m-1}{2 m a^{2}} \int \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m}}

Primitives of the Form R(cosx,sinx)dx\int R(\cos x, \sin x)\mathrm dx

We make the change of variable t=tanx2t = \tan \frac{x} {2} . Since:

cosx=1tan2x21+tan2x2,sinx=2tanx21+tan2x2\cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}, \qquad \sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}

so that

dt=dx2cos2x2dx=2dt1+tan2x2=2dt1+t2\mathrm{d} t=\frac{\mathrm{d} x}{2 \cos ^{2} \frac{x}{2}} \quad \Rightarrow\quad \mathrm{d} x=\frac{2 \mathrm{d} t}{1+\tan ^{2} \frac{x}{2}}=\frac{2\,\mathrm{d} t}{1+t^{2}}

It follows that

R(cosx,sinx)dx=R(1t21+t2,2t1+t2)21+t2dt\int R(\cos x, \sin x) \mathrm{d} x=\int R\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right) \frac{2}{1+t^{2}} \mathrm{d} t

not only sin,cos\sin ,\coscan to do this, but here are a lot of formula:

tana=2tana21tan2a2\tan a=\frac{2 \tan \frac{a}{2}}{1-\tan ^{2} \frac{a}{2}}, cotα=1tan2α22tanα2\cot \alpha=\frac{1-\tan ^{2} \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}}, secα=1+tan2α21tan2α2\sec \alpha=\frac{1+\tan ^{2} \frac{\alpha}{2}}{1-\tan ^{2} \frac{\alpha}{2}},cscα=1+tan2α22tanα2\csc \alpha=\frac{1+\tan ^{2} \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}}

Integration

Riemann Sums

partition

A partition P of a closed interval [a,b][a,b], a<ba < b, is a finite system of points x0,,xnx_0,\cdots,x_n of the interval such that a=x0<x1<<xn=ba = x_0 < x_1 <\cdots < x_n = b.

If a function ff is defined on the closed interval [a,b][a, b] and (P,ξ)(P, \xi) is a partition with distinguished points on this closed interval, the sum

σ(f;P,ξ):=i=1nf(ξi)Δxi\sigma(f ; P, \xi):=\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}

where Δxi=xixi1\Delta x_i = x_i − x_{i−1}, is the Riemann sum of the function ff corresponding to the partition (P,ξ)(P, \xi) with distinguished points on [a,b][a,b].

The largest of the lengths of the intervals of the partition PP , denoted λ(P)\lambda(P), is called the mesh of the partition.

we define:

abf(x)dx:=limλ(P)0i=1nf(ξi)Δxi\int_{a}^{b} f(x) \mathrm{d} x:=\lim _{\lambda(P) \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}

Integral mean value theorem

If ff is a continuous function on the closed, bounded interval [a,b][a,b], then there is at least one number ξ\xi in (a,b)(a , b ) for which

abf(x)dx=f(ξ)(ba)\int_{a}^{b} f(x) \mathrm{d} x=f(\xi)(b-a)

The second Integral mean value theorem

If f,gf , g are continuous functions on the closed, bounded interval [a,b][a,b],gg is monotonous on [a,b][a, b], then there is at least one number ξ\xi in (a,b)(a , b ) for which

ab(fg)(x)dx=g(a)aξf(x)dx+g(b)ξbf(x)dx\int_{a}^{b}(f \cdot g)(x) \mathrm{d} x=g(a) \int_{a}^{\xi} f(x) \mathrm{d} x+g(b) \int_{\xi}^{b} f(x) \mathrm{d} x

Newton-Leibniz formula

Let ff be a continuous real-valued function defined on a closed interval [a,b][a, b]. Let FF be the function defined, s.t.

ddxaxf(t)dt=f(x),x[a,b]\frac{d}{\mathrm{d} x} \int_{a}^{x} f(t) \mathrm{d} t=f(x), \quad \forall x \in[a, b]

Substitution Rule For Definite Integrals

Suppose fC[a,b],φ:[α,β][a,b]f \in C[a, b], \varphi:[\alpha, \beta] \rightarrow[a, b]and φR[α,β],φ(α)=a,φ(β)=b\varphi^{\prime} \in \mathcal{R}[\alpha, \beta],\varphi(\alpha)=a, \varphi(\beta)=b, s.t.

abf(x)dx=αβf(φ(t))φ(t)dt\int_{a}^{b} f(x) \mathrm{d} x=\int_{\alpha}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t

\blacksquare

Last updated

Was this helpful?