Antiderivative
Definition
In calculus, an antiderivative , inverse derivative , primitive function , primitive integral or indefinite integral of a function f f f is a differentiable function F F F whose derivative is equal to the original function f f f .
Suppose F ′ ( x ) = f ( x ) F'(x)=f(x) F ′ ( x ) = f ( x ) , the notation is
∫ f ( x ) d x = F ( x ) \int f(x)\mathrm dx=F(x) ∫ f ( x ) d x = F ( x ) So all the antiderivative of f f f become a family set { F ( x ) + C ∣ C ∈ R } \{F(x)+C|C\in\mathbb R\} { F ( x ) + C ∣ C ∈ R } .
also the equation below is obviously.
d ∫ f ( x ) d x = f ( x ) d x , ∫ F ′ ( x ) d x = F ( x ) + c \mathrm d \int f(x) \mathrm{d} x=f(x) \mathrm{d} x, \quad \int F^{\prime}(x) \mathrm{d} x=F(x)+c d ∫ f ( x ) d x = f ( x ) d x , ∫ F ′ ( x ) d x = F ( x ) + c Theorem: Integration by parts
∫ u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) − ∫ u ′ ( x ) v ( x ) d x \int u(x)v'(x)\,\mathrm dx=u(x)v(x)-\int u'(x)v(x)\,\mathrm dx ∫ u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) − ∫ u ′ ( x ) v ( x ) d x Example: Wallis product
Prove:
so that:
so that:
Simplify the Polynomial and Integral
and with these formulas below:
And from that we get the recursion:
so that
It follows that
Integration
Riemann Sums
partition
we define:
Integral mean value theorem
The second Integral mean value theorem
Newton-Leibniz formula
Substitution Rule For Definite Integrals
the Wallis product for π \pi π , published in 1656 by John Wallis states that
π 2 = ∏ n = 1 ∞ 4 n 2 4 n 2 − 1 = ∏ n = 1 ∞ ( 2 n 2 n − 1 ⋅ 2 n 2 n + 1 ) = ( 2 1 ⋅ 2 3 ) ⋅ ( 4 3 ⋅ 4 5 ) ⋅ ( 6 5 ⋅ 6 7 ) ⋅ ( 8 7 ⋅ 8 9 ) ⋅ ⋯ \begin{aligned}{\frac {\pi }{2}}&=\prod _{n=1}^{\infty }{\frac {4n^{2}}{4n^{2}-1}}=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)\\[6pt]&={\Big (}{\frac {2}{1}}\cdot {\frac {2}{3}}{\Big )}\cdot {\Big (}{\frac {4}{3}}\cdot {\frac {4}{5}}{\Big )}\cdot {\Big (}{\frac {6}{5}}\cdot {\frac {6}{7}}{\Big )}\cdot {\Big (}{\frac {8}{7}}\cdot {\frac {8}{9}}{\Big )}\cdot \;\cdots \\\end{aligned} 2 π = n = 1 ∏ ∞ 4 n 2 − 1 4 n 2 = n = 1 ∏ ∞ ( 2 n − 1 2 n ⋅ 2 n + 1 2 n ) = ( 1 2 ⋅ 3 2 ) ⋅ ( 3 4 ⋅ 5 4 ) ⋅ ( 5 6 ⋅ 7 6 ) ⋅ ( 7 8 ⋅ 9 8 ) ⋅ ⋯ I ( n ) = ∫ 0 π sin n x d x = ∫ 0 π − u d v = − u v ∣ x = 0 x = π − ∫ 0 π − v d u = − sin n − 1 x cos x ∣ x = 0 x = π − ∫ 0 π − cos x ( n − 1 ) sin n − 2 x cos x d x = 0 − ( n − 1 ) ∫ 0 π − cos 2 x sin n − 2 x d x , n > 1 = ( n − 1 ) ∫ 0 π ( 1 − sin 2 x ) sin n − 2 x d x = ( n − 1 ) ∫ 0 π sin n − 2 x d x − ( n − 1 ) ∫ 0 π sin n x d x = ( n − 1 ) I ( n − 2 ) − ( n − 1 ) I ( n ) = n − 1 n I ( n − 2 ) ⇒ I ( n ) I ( n − 2 ) = n − 1 n ⇒ I ( 2 n − 1 ) I ( 2 n + 1 ) = 2 n + 1 2 n \begin{align} I(n) &= \int_0^\pi \sin^nx\,\mathrm dx=\int_0^\pi -u \,\mathrm dv = -uv |_{x=0}^{x=\pi}-\int_0^\pi -v \,\mathrm du \\ {} &= -\sin^{n-1}x\cos x |_{x=0}^{x=\pi} - \int_0^\pi - \cos x(n-1) \sin^{n-2}x \cos x \,\mathrm dx \\ {} &= 0 - (n-1) \int_0^\pi -\cos^2x \sin^{n-2}x\,\mathrm dx, n > 1 \\ {} &= (n - 1) \int_0^\pi (1-\sin^2 x) \sin^{n-2}x \,\mathrm dx \\ {} &= (n - 1) \int_0^\pi \sin^{n-2}x\,\mathrm dx - (n - 1) \int_0^\pi \sin^{n}x \,\mathrm dx \\ {} &= (n - 1) I(n-2)-(n-1) I(n) \\ {} &= \frac{n-1}{n} I(n-2) \\ \Rightarrow \frac{I(n)}{I(n-2)} &= \frac{n-1}{n} \\ \Rightarrow \frac{I(2n-1)}{I(2n+1)} &=\frac{2n+1}{2n} \end{align} I ( n ) ⇒ I ( n − 2 ) I ( n ) ⇒ I ( 2 n + 1 ) I ( 2 n − 1 ) = ∫ 0 π sin n x d x = ∫ 0 π − u d v = − uv ∣ x = 0 x = π − ∫ 0 π − v d u = − sin n − 1 x cos x ∣ x = 0 x = π − ∫ 0 π − cos x ( n − 1 ) sin n − 2 x cos x d x = 0 − ( n − 1 ) ∫ 0 π − cos 2 x sin n − 2 x d x , n > 1 = ( n − 1 ) ∫ 0 π ( 1 − sin 2 x ) sin n − 2 x d x = ( n − 1 ) ∫ 0 π sin n − 2 x d x − ( n − 1 ) ∫ 0 π sin n x d x = ( n − 1 ) I ( n − 2 ) − ( n − 1 ) I ( n ) = n n − 1 I ( n − 2 ) = n n − 1 = 2 n 2 n + 1 ∫ 0 π 2 sin n x d x = { π 2 ( 2 n − 1 ) ! ! ( 2 n ) ! ! n is even ( 2 n − 1 ) ! ! ( 2 n ) ! ! n is odd \int_0^{\frac{\pi} {2}} \sin^nx\,\mathrm dx = \left\{\begin{matrix}\frac{\pi}{2}\frac{(2n-1)!!}{(2n)!!}& \text{n is even} \\ \\ \frac{(2n-1)!!}{(2n)!!}&\text{n is odd}
\end{matrix}
\right. ∫ 0 2 π sin n x d x = ⎩ ⎨ ⎧ 2 π ( 2 n )!! ( 2 n − 1 )!! ( 2 n )!! ( 2 n − 1 )!! n is even n is odd ⇒ lim n → ∞ I ( 2 n ) I ( 2 n + 1 ) = 1 lim n → ∞ I ( 2 n ) I ( 2 n + 1 ) = π 2 lim n → ∞ ∏ k = 1 n ( 2 k − 1 2 k ⋅ 2 k + 1 2 k ) = 1 ⇒ π 2 = ∏ k = 1 ∞ ( 2 k 2 k − 1 ⋅ 2 k 2 k + 1 ) = 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋯ \begin{aligned}
\Rightarrow& \lim _{n \rightarrow \infty} \frac{I(2 n)}{I(2 n+1)}=1 \\
&\lim _{n \rightarrow \infty} \frac{I(2 n)}{I(2 n+1)}=\frac{\pi}{2} \lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(\frac{2 k-1}{2 k} \cdot \frac{2 k+1}{2 k}\right)=1 \\
\Rightarrow& \frac{\pi}{2}=\prod_{k=1}^{\infty}\left(\frac{2 k}{2 k-1} \cdot \frac{2 k}{2 k+1}\right)=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots
\end{aligned} ⇒ ⇒ n → ∞ lim I ( 2 n + 1 ) I ( 2 n ) = 1 n → ∞ lim I ( 2 n + 1 ) I ( 2 n ) = 2 π n → ∞ lim k = 1 ∏ n ( 2 k 2 k − 1 ⋅ 2 k 2 k + 1 ) = 1 2 π = k = 1 ∏ ∞ ( 2 k − 1 2 k ⋅ 2 k + 1 2 k ) = 1 2 ⋅ 3 2 ⋅ 3 4 ⋅ 5 4 ⋅ 5 6 ⋅ 7 6 ⋯ If Q ( z ) = ( z − z 1 ) k 1 ⋯ ( z − z p ) k p Q(z)=\left(z-z{1}\right)^{k{1}} \cdots\left(z-z{p}\right)^{k{p}} Q ( z ) = ( z − z 1 ) k 1 ⋯ ( z − z p ) k p and P ( z ) Q ( z ) \frac{P(z)}{Q(z)} Q ( z ) P ( z ) is a proper fraction , there exists a unique representation of the fraction P ( z ) Q ( z ) \frac{P(z)}{Q(z)} Q ( z ) P ( z ) in the form
P ( z ) Q ( z ) = ∑ j = 1 p ( ∑ k = 1 k j a j k ( z − z j ) k ) \frac{P(z)}{Q(z)}=\sum_{j=1}^{p}\left(\sum_{k=1}^{k_{j}} \frac{a_{j k}}{\left(z-z_{j}\right)^{k}}\right) Q ( z ) P ( z ) = j = 1 ∑ p k = 1 ∑ k j ( z − z j ) k a jk and if P ( x ) P(x) P ( x ) and Q ( x ) Q(x) Q ( x ) are polynomials with real coefficients and
Q ( x ) = ( x − x 1 ) k 1 ⋯ ( x − x l ) k l ( x 2 + p 1 x + q 1 ) m 1 ⋯ ( x 2 + p n x + q n ) m n Q(x)=\left(x-x_{1}\right)^{k_{1}} \cdots\left(x-x_{l}\right)^{k_{l}}\left(x^{2}+p_{1} x+q_{1}\right)^{m_{1}} \cdots\left(x^{2}+p_{n} x+q_{n}\right)^{m_{n}} Q ( x ) = ( x − x 1 ) k 1 ⋯ ( x − x l ) k l ( x 2 + p 1 x + q 1 ) m 1 ⋯ ( x 2 + p n x + q n ) m n there exists a unique representation of the proper fraction P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q ( x ) P ( x ) in the form
P ( x ) Q ( x ) = ∑ j = 1 l ( ∑ k = 1 k j a j k ( x − x j ) k ) + ∑ j = 1 n ( ∑ k = 1 m j b j k x + c j k ( x 2 + p j x + q j ) k ) \frac{P(x)}{Q(x)}=\sum_{j=1}^{l}\left(\sum_{k=1}^{k_{j}} \frac{a_{j k}}{\left(x-x_{j}\right)^{k}}\right)+\sum_{j=1}^{n}\left(\sum_{k=1}^{m_{j}} \frac{b_{j k} x+c_{j k}}{\left(x^{2}+p_{j} x+q_{j}\right)^{k}}\right) Q ( x ) P ( x ) = j = 1 ∑ l k = 1 ∑ k j ( x − x j ) k a jk + j = 1 ∑ n ( k = 1 ∑ m j ( x 2 + p j x + q j ) k b jk x + c jk ) where a j k , b j k , a_{jk}, b_{jk}, a jk , b jk , and c j k c_{j k} c jk are real numbers.
∫ d x ( x − a ) m = { − 1 ( m − 1 ) ( x − a ) m − 1 + c , m ≠ 1 log ∣ x − a ∣ + c , m = 1 ∫ 2 x d x ( x 2 + a 2 ) m = ∫ d ( x 2 + a 2 ) ( x 2 + a 2 ) m = { − 1 ( m − 1 ) ( x 2 + a 2 ) m − 1 + c , m ≠ 1 log ( x 2 + a 2 ) + c , m = 1 ∫ d x ( x 2 + a 2 ) m = x ( x 2 + a 2 ) m + ∫ 2 m x 2 d x ( x 2 + a 2 ) m + 1 = x ( x 2 + a 2 ) m + ∫ 2 m d x ( x 2 + a 2 ) m − 2 m a 2 ∫ d x ( x 2 + a 2 ) m + 1 \begin{aligned}
\int \frac{\mathrm{d} x}{(x-a)^{m}}&=\left\{\begin{array}{ll}
-\frac{1}{(m-1)(x-a)^{m-1}}+c, & m \neq 1 \\ \\
\log |x-a|+c, & m=1
\end{array}\right. \\ \\
\int \frac{2 x \mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m}}&=\int \frac{\mathrm{d}\left(x^{2}+a^{2}\right)}{\left(x^{2}+a^{2}\right)^{m}}=\left\{\begin{array}{c}
-\frac{1}{(m-1)\left(x^{2}+a^{2}\right)^{m-1}}+c, \quad &m \neq 1 \\ \\
\log \left(x^{2}+a^{2}\right)+c, \quad &m=1
\end{array}\right. \\\\
\int \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m}}&=\frac{x}{\left(x^{2}+a^{2}\right)^{m}}+\int \frac{2 m x^{2} \mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m+1}}
\\&=\frac{x}{\left(x^{2}+a^{2}\right)^{m}}+\int \frac{2 m \mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m}}-2 m a^{2} \int \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m+1}}
\end{aligned} ∫ ( x − a ) m d x ∫ ( x 2 + a 2 ) m 2 x d x ∫ ( x 2 + a 2 ) m d x = ⎩ ⎨ ⎧ − ( m − 1 ) ( x − a ) m − 1 1 + c , log ∣ x − a ∣ + c , m = 1 m = 1 = ∫ ( x 2 + a 2 ) m d ( x 2 + a 2 ) = ⎩ ⎨ ⎧ − ( m − 1 ) ( x 2 + a 2 ) m − 1 1 + c , log ( x 2 + a 2 ) + c , m = 1 m = 1 = ( x 2 + a 2 ) m x + ∫ ( x 2 + a 2 ) m + 1 2 m x 2 d x = ( x 2 + a 2 ) m x + ∫ ( x 2 + a 2 ) m 2 m d x − 2 m a 2 ∫ ( x 2 + a 2 ) m + 1 d x ∫ d x ( x 2 + a 2 ) m + 1 = 1 2 m a 2 x ( x 2 + a 2 ) m + 2 m − 1 2 m a 2 ∫ d x ( x 2 + a 2 ) m \int \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m+1}}=\frac{1}{2 m a^{2}} \frac{x}{\left(x^{2}+a^{2}\right)^{m}}+\frac{2 m-1}{2 m a^{2}} \int \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{m}} ∫ ( x 2 + a 2 ) m + 1 d x = 2 m a 2 1 ( x 2 + a 2 ) m x + 2 m a 2 2 m − 1 ∫ ( x 2 + a 2 ) m d x Primitives of the Form
∫ R ( cos x , sin x ) d x \int R(\cos x, \sin x)\mathrm dx ∫ R ( cos x , sin x ) d x We make the change of variable t = tan x 2 t = \tan \frac{x} {2} t = tan 2 x . Since:
cos x = 1 − tan 2 x 2 1 + tan 2 x 2 , sin x = 2 tan x 2 1 + tan 2 x 2 \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}, \qquad \sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}} cos x = 1 + tan 2 2 x 1 − tan 2 2 x , sin x = 1 + tan 2 2 x 2 tan 2 x d t = d x 2 cos 2 x 2 ⇒ d x = 2 d t 1 + tan 2 x 2 = 2 d t 1 + t 2 \mathrm{d} t=\frac{\mathrm{d} x}{2 \cos ^{2} \frac{x}{2}} \quad \Rightarrow\quad \mathrm{d} x=\frac{2 \mathrm{d} t}{1+\tan ^{2} \frac{x}{2}}=\frac{2\,\mathrm{d} t}{1+t^{2}} d t = 2 cos 2 2 x d x ⇒ d x = 1 + tan 2 2 x 2 d t = 1 + t 2 2 d t ∫ R ( cos x , sin x ) d x = ∫ R ( 1 − t 2 1 + t 2 , 2 t 1 + t 2 ) 2 1 + t 2 d t \int R(\cos x, \sin x) \mathrm{d} x=\int R\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right) \frac{2}{1+t^{2}} \mathrm{d} t ∫ R ( cos x , sin x ) d x = ∫ R ( 1 + t 2 1 − t 2 , 1 + t 2 2 t ) 1 + t 2 2 d t not only sin , cos \sin ,\cos sin , cos can to do this, but here are a lot of formula:
tan a = 2 tan a 2 1 − tan 2 a 2 \tan a=\frac{2 \tan \frac{a}{2}}{1-\tan ^{2} \frac{a}{2}} tan a = 1 − t a n 2 2 a 2 t a n 2 a , cot α = 1 − tan 2 α 2 2 tan α 2 \cot \alpha=\frac{1-\tan ^{2} \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}} cot α = 2 t a n 2 α 1 − t a n 2 2 α , sec α = 1 + tan 2 α 2 1 − tan 2 α 2 \sec \alpha=\frac{1+\tan ^{2} \frac{\alpha}{2}}{1-\tan ^{2} \frac{\alpha}{2}} sec α = 1 − t a n 2 2 α 1 + t a n 2 2 α ,csc α = 1 + tan 2 α 2 2 tan α 2 \csc \alpha=\frac{1+\tan ^{2} \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}} csc α = 2 t a n 2 α 1 + t a n 2 2 α
A partition P of a closed interval [ a , b ] [a,b] [ a , b ] , a < b a < b a < b , is a finite system of points x 0 , ⋯ , x n x_0,\cdots,x_n x 0 , ⋯ , x n of the interval such that a = x 0 < x 1 < ⋯ < x n = b a = x_0 < x_1 <\cdots < x_n = b a = x 0 < x 1 < ⋯ < x n = b .
If a function f f f is defined on the closed interval [ a , b ] [a, b] [ a , b ] and ( P , ξ ) (P, \xi) ( P , ξ ) is a partition with distinguished points on this closed interval, the sum
σ ( f ; P , ξ ) : = ∑ i = 1 n f ( ξ i ) Δ x i \sigma(f ; P, \xi):=\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i} σ ( f ; P , ξ ) := i = 1 ∑ n f ( ξ i ) Δ x i where Δ x i = x i − x i − 1 \Delta x_i = x_i − x_{i−1} Δ x i = x i − x i − 1 , is the Riemann sum of the function f f f corresponding to the partition ( P , ξ ) (P, \xi) ( P , ξ ) with distinguished points on [ a , b ] [a,b] [ a , b ] .
The largest of the lengths of the intervals of the partition P P P , denoted λ ( P ) \lambda(P) λ ( P ) , is called the mesh of the partition.
∫ a b f ( x ) d x : = lim λ ( P ) → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int_{a}^{b} f(x) \mathrm{d} x:=\lim _{\lambda(P) \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i} ∫ a b f ( x ) d x := λ ( P ) → 0 lim i = 1 ∑ n f ( ξ i ) Δ x i If f f f is a continuous function on the closed, bounded interval [ a , b ] [a,b] [ a , b ] , then there is at least one number ξ \xi ξ in ( a , b ) (a , b ) ( a , b ) for which
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_{a}^{b} f(x) \mathrm{d} x=f(\xi)(b-a) ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) If f , g f , g f , g are continuous functions on the closed, bounded interval [ a , b ] [a,b] [ a , b ] ,g g g is monotonous on [ a , b ] [a, b] [ a , b ] , then there is at least one number ξ \xi ξ in ( a , b ) (a , b ) ( a , b ) for which
∫ a b ( f ⋅ g ) ( x ) d x = g ( a ) ∫ a ξ f ( x ) d x + g ( b ) ∫ ξ b f ( x ) d x \int_{a}^{b}(f \cdot g)(x) \mathrm{d} x=g(a) \int_{a}^{\xi} f(x) \mathrm{d} x+g(b) \int_{\xi}^{b} f(x) \mathrm{d} x ∫ a b ( f ⋅ g ) ( x ) d x = g ( a ) ∫ a ξ f ( x ) d x + g ( b ) ∫ ξ b f ( x ) d x Let f f f be a continuous real-valued function defined on a closed interval [ a , b ] [a, b] [ a , b ] . Let F F F be the function defined, s.t.
d d x ∫ a x f ( t ) d t = f ( x ) , ∀ x ∈ [ a , b ] \frac{d}{\mathrm{d} x} \int_{a}^{x} f(t) \mathrm{d} t=f(x), \quad \forall x \in[a, b] d x d ∫ a x f ( t ) d t = f ( x ) , ∀ x ∈ [ a , b ] Suppose f ∈ C [ a , b ] , φ : [ α , β ] → [ a , b ] f \in C[a, b], \varphi:[\alpha, \beta] \rightarrow[a, b] f ∈ C [ a , b ] , φ : [ α , β ] → [ a , b ] and φ ′ ∈ R [ α , β ] , φ ( α ) = a , φ ( β ) = b \varphi^{\prime} \in \mathcal{R}[\alpha, \beta],\varphi(\alpha)=a, \varphi(\beta)=b φ ′ ∈ R [ α , β ] , φ ( α ) = a , φ ( β ) = b , s.t.
∫ a b f ( x ) d x = ∫ α β f ( φ ( t ) ) φ ′ ( t ) d t \int_{a}^{b} f(x) \mathrm{d} x=\int_{\alpha}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t ∫ a b f ( x ) d x = ∫ α β f ( φ ( t )) φ ′ ( t ) d t