✍️
mathematical analysis
  • content
  • Mathematical Analysis 1
    • 1. Limits
    • 2. Continuity
    • 3. Differential calculus
    • 4. Integral
  • Mathematical Analysis 2
    • 5. Continuity of multivariate functions
    • 6. Differential calculus of multivariate functions
    • 7. Multiple integral
    • 8. Multivariate functions' surface
      • Line integral (3-dimension)
      • Surface integral (3-dimension)
      • field theory
    • 9. Differential form
  • Mathematical Analysis 3
    • 10. Series
    • 11. Improper integral
    • 12. Fourier analysis
    • 13. Special function
Powered by GitBook
On this page
  • Definition: Metric Spaces
  • traditional distance:
  • Minkowski's inequality
  • Definition: neighborhood
  • Accumulation point
  • Limit point
  • Boundary point
  • Open set
  • Derived set
  • Closure
  • Close Set
  • Connected set
  • path connectedness
  • Quasi-mean value theorem
  • The rank theorem

Was this helpful?

  1. Mathematical Analysis 2

5. Continuity of multivariate functions

Previous4. IntegralNext6. Differential calculus of multivariate functions

Last updated 4 years ago

Was this helpful?

Definition: Metric Spaces

A set XXX is said to be endowed with a metric or aaa metric space structure or to be a metric space if a function

d:X×X→Rd: X \times X \rightarrow \mathbb{R}d:X×X→R

is exhibited satisfying the following conditions:

  1. d(x1,x2)=0⇔x1=x2d\left(x_{1}, x_{2}\right)=0 \Leftrightarrow x_{1}=x_{2}d(x1​,x2​)=0⇔x1​=x2​

  2. d(x1,x2)=d(x2,x1)d\left(x_{1}, x_{2}\right)=d\left(x_{2}, x_{1}\right)d(x1​,x2​)=d(x2​,x1​) (symmetry)

  3. d(x1,x3)≤d(x1,x2)+d(x2,x3)d\left(x_{1}, x_{3}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)d(x1​,x3​)≤d(x1​,x2​)+d(x2​,x3​) (the triangle inequality),

where x1,x2,x3x_{1}, x_{2}, x_{3}x1​,x2​,x3​ are arbitrary elements of XXX.

By default, all the Spaces mentioned below are Metric Spaces.

traditional distance:

d(x1,x2)=∑i=1n∣x1i−x2i∣2d\left(x_{1}, x_{2}\right)=\sqrt{\sum_{i=1}^{n}\left|x_{1}^{i}-x_{2}^{i}\right|^{2}}d(x1​,x2​)=i=1∑n​​x1i​−x2i​​2​

Minkowski's inequality

Definition: neighborhood

Chinese: 鄰域

>>>>>>>>>>>>>>>>>> Under construction <<<<<<<<<<<<<<<<<<

Accumulation point

Chinese: 聚點

Limit point

Chinese: 極限點

Boundary point

Chinese: 邊界點

Open set

Chinese: 開集

Derived set

Chinese: 導集

Closure

Chinese: 閉包

Close Set

Chinese: 閉集

Connected set

Chinese: 連通集

path connectedness

Chinese: 道路連通

Quasi-mean value theorem

The rank theorem

between points x1=(x11,…,x1n)x_{1}=\left(x_{1}^{1}, \ldots, x_{1}^{n}\right)x1​=(x11​,…,x1n​) and x2=(x21,…,x2n)x_{2}=\left(x_{2}^{1}, \ldots, x_{2}^{n}\right)x2​=(x21​,…,x2n​) in Rn\mathbb{R}^{n}Rn, this can also introduce the distance

dp(x1,x2)=(∑i=1n∣x1i−x2i∣p)1/pd_{p}\left(x_{1}, x_{2}\right)=\left(\sum_{i=1}^{n}\left|x_{1}^{i}-x_{2}^{i}\right|^{p}\right)^{1 / p}dp​(x1​,x2​)=(i=1∑n​​x1i​−x2i​​p)1/p

where p≥1p \geq 1p≥1.

(∑i=1n∣xi+yi∣p)1p≤(∑i=1n∣xi∣p)1p+(∑i=1n∣yi∣p)1p,∀x,y∈Rn,p≥1\left(\sum_{i=1}^{n}\left|x^{i}+y^{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{n}\left|x^{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}\left|y^{i}\right|^{p}\right)^{\frac{1}{p}}, \quad \forall x, y \in \mathbb{R}^{n}, p \geq 1(i=1∑n​​xi+yi​p)p1​≤(i=1∑n​​xi​p)p1​+(i=1∑n​​yi​p)p1​,∀x,y∈Rn,p≥1

so dp(x1,x2)d_{p}\left(x_{1}, x_{2}\right)dp​(x1​,x2​) is satisfying the following conditions above.

For δ>0\delta>0δ>0 and a∈Xa \in Xa∈X the set

B(a,δ)={x∈X∣d(a,x)<δ}B(a, \delta)=\{x \in X \mid d(a, x)<\delta\}B(a,δ)={x∈X∣d(a,x)<δ}

is called the ball with center a∈Xa \in Xa∈X of radius δ\deltaδ or the δ−\delta -δ−neighborhood of the point aaa.

A subset UUU of a metric space (M,d)(M, d)(M,d) is called open if, given any point xxx in UUU, there exists a real number ε>0\varepsilon>0ε>0 such that, given any point yyy in MMM with d(x,y)<εd(x, y)<\varepsilond(x,y)<ε, yyy also belongs to UUU.

■\blacksquare■