7. Multiple integral

Riemann sum

Very similar to this: Riemann Sum (univariate calculus).

Intuition define:

Now give you a partition PP:

P:I=j=1mIjP: I=\bigcup_{j=1}^{m} I_{j}

of this interval with distinguished points ξ={ξ1,,ξk}\xi=\left\{\xi_{1}, \cdots, \xi_{k}\right\}.

We defined Riemann sum as:

σ(f,P,ξ):=i=1kf(ξi)Ii\sigma(f, P, \xi):=\sum_{i=1}^{k} f\left(\xi_{i}\right)\left|I_{i}\right|

If limP0σ(f,P,ξ)\lim _{|P| \rightarrow 0} \sigma(f, P, \xi)exist and finite, we often denoted it as If(x)dx\int_I f(x)\mathrm d x or :

If(x1,,xn)dx1dxn,f(x1,,xn)dx1dxn\int_{I} f\left(x^{1}, \cdots, x^{n}\right) \mathrm{d} x^{1} \cdots \mathrm{d} x^{n}, \quad \int \cdots \int f\left(x^{1}, \cdots, x^{n}\right) \mathrm{d} x^{1} \cdots \mathrm{d} x^{n}

Fubini’s Theorem

Let X×YX \times Y be an interval in Rm+n\mathbb{R}^{m+n}, which is the direct product of intervals XRmX \subset \mathbb{R}^{m} and YRnY \subset \mathbb R^{n} . If the function f:X×YRf: X \times Y \rightarrow \mathbb{R} is integrable over X×YX \times Y, then all three of the integrals

X×Yf(x,y)dxdy,XdxYf(x,y)dy,YdyXf(x,y)dx\int_{X \times Y} f(x, y) \mathrm{d} x \mathrm{d} y, \quad \int_{X} \mathrm{d} x \int_{Y} f(x, y) \mathrm{d} y, \quad \int_{Y} \mathrm{d} y \int_{X} f(x, y) \mathrm{d} x

exist and are equal.

Change of Variable in a Multiple Integral

If φ:DtDx\varphi: D_{t} \rightarrow D_{x} is a diffeomorphism of a bounded open set DtRnD_{t} \subset \mathbb{R}^{n} onto a set Dx=φ(Dt)RnD_{x}=\varphi\left(D_{t}\right) \subset \mathbb{R}^{n} of the same type, fR(Dx),f \in \mathcal{R}\left(D_{x}\right), and suppf\operatorname{supp} f is a compact subset of DxD_{x}, then fφdetφR(Dt)f \circ \varphi\left|\operatorname{det} \varphi^{\prime}\right| \in \mathcal{R}\left(D_{t}\right), and the following formula holds:

simplified Chinese: 设 φ:DtDx\varphi: D_{t} \rightarrow D_{x}Rn\mathbb{R}^{n} 中的有界开集之间的微分同胚,ff 为 定义在 DxD_{x} 上的函数,满足条件 suppfDx.\operatorname{supp} f \subset D{x} .fR(Dx)f \in \mathcal{R}\left(D{x}\right) 当且仅当 fφdetφR(Dt)f \circ \varphi \cdot\left|\operatorname{det} \varphi^{\prime}\right| \in \mathcal{R}\left(D_{t}\right), 并且如果 fR(Dx)f \in \mathcal{R}\left(D_{x}\right),则成立如下的变量代换公式:

Dxf(x)dx=Dtfφdetφdt\int_{D_{x}} f(x) \mathrm{d} x=\int_{D_{t}} f \circ \varphi \cdot\left|\operatorname{det} \varphi^{\prime}\right| \mathrm{d} t

Example

(1) Polar coordinate transformation

In general polar coordinates (r,θ1,,θn1)(r,\theta_1,\cdots,\theta_{n−1}) in Rn\mathbb R^n are introduced via the relations:

{x1=rcosθ1x2=rsinθ1cosθ2xn1=rsinθ1sinθ2sinθn2cosθn1xn=rsinθ1sinθ2sinθn1sinθn1\left\{\begin{array}{l} x^{1}\quad=r \cos \theta_{1} \\ x^{2}\quad=r \sin \theta_{1} \cos \theta_{2} \\ \qquad\vdots \\ x^{n-1}=r \sin \theta_{1} \sin \theta_{2} \cdot \ldots \sin \theta_{n-2} \cos \theta_{n-1} \\ x^{n}\quad=r \sin \theta_{1} \sin \theta_{2} \cdot \ldots \cdot \sin \theta_{n-1} \sin \theta_{n-1} \end{array}\right.

because of the orthogonality, we have:

detψ2=detψdet(ψ)T=xrxθ1xθn1=(rn1sinn2θ1sinn3θ2sinθn2)2\begin{aligned} \left|\operatorname{det} \psi^{\prime}\right|^{2} &=\operatorname{det} \psi^{\prime} \cdot \operatorname{det}\left(\psi^{\prime}\right)^{T}=\left\|\frac{\partial x}{\partial r}\right\|\left\|\frac{\partial x}{\partial \theta_{1}}\right\| \cdots\left\|\frac{\partial x}{\partial \theta_{n-1}}\right\| \\ &=\left(r^{n-1} \sin ^{n-2} \theta_{1} \sin ^{n-3} \theta_{2} \ldots \sin \theta_{n-2}\right)^{2} \end{aligned}

so we recall the Jacobian:

J=rn1sinn2θ1sinn3θ2sinθn2J=r^{n-1} \sin ^{n-2} \theta_{1} \sin ^{n-3} \theta_{2} \cdot \ldots \cdot \sin \theta_{n-2}

(2) The volume of nn-dimensional sphere

Denote the sphere is Bn(r)B_n(r)We can easily have the recurrence formula:

Vn(r)=rrdxBn1(r2x2)dx2dxn=rrVn1(r2x2)dxV_{n}(r)=\int_{-r}^{r} \mathrm{d} x \int_{B_{n-1}\left(\sqrt{r^{2}-x^{2}}\right)} \mathrm{d} x^{2} \cdots \mathrm{d} x^{n}=\int_{-r}^{r} V_{n-1}\left(\sqrt{r^{2}-x^{2}}\right) \mathrm{d} x

It's trivial that V1(r)=2rV_1(r)=2r, V2(r)=πr2V_2(r)=\pi r^2, assume that Vn(r)=cnrnV_{n}(r)=c_{n} r^{n}, so

Vn+1(r)=rrcn(r2x2)n2dx=cnπ2π2rncosnφrcosφdφ=cnπ2π2rn+1cosn+1φdφ=cn+1rn+1\begin{aligned} V_{n+1}(r) &=\int_{-r}^{r} c_{n}\left(r^{2}-x^{2}\right)^{\frac{n}{2}} \mathrm{d} x=c_{n} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^{n} \cos ^{n} \varphi \cdot r \cos \varphi \mathrm{d} \varphi \\ &=c_{n} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^{n+1} \cos ^{n+1} \varphi \mathrm{d} \varphi=c_{n+1} r^{n+1} \end{aligned}

with

cn+1=cnπ2π2cosn+1φdφc_{n+1}=c_{n} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{n+1} \varphi \mathrm{d} \varphi

so that,

Vn(r)={2(2π)k(2k+1)!!r2k+1,n=2k+1(2π)k(2k)!!r2k,n=2kV_{n}(r)=\left\{\begin{array}{ll} 2 \frac{(2 \pi)^{k}}{(2 k+1) ! !} r^{2 k+1}, & n=2 k+1 \\ \frac{(2 \pi)^{k}}{(2 k) ! !} r^{2 k}, & n=2 k \end{array}\right.

\blacksquare

Last updated

Was this helpful?