1. Limits

Definition: series limit

(limnxn=A):=ε>0NNn>N(xnA<ε)\left(\lim _{n \rightarrow \infty} x_{n}=A\right):=\forall \varepsilon>0\quad \exists N \in \mathbb{N}\quad \forall n>N\quad \left(\left|x_{n}-A\right|<\varepsilon\right)

We say that the sequence {xn}\{x_n\} converges to AA or tends to AA and write xnAx_n \to A as nn \to \infty.

Definition: fundamental or Cauchy sequence

A sequence {xn}\{x_n\} is called a fundamental or Cauchy sequence if for any ε>0\varepsilon > 0 there exists an index NNN \in N such that xmxn<ε|x_m − x_n| < \varepsilon whenever n>Nn > N and m>N m > N.

Theorem: Weierstrass

In order for a nondecreasing sequence to have a limit, it is necessary and sufficient that it be bounded above.

Two important limit

 e :=limn(1+1n)n\text { e }:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
limx0sinxx=1\lim_{x\to 0}\frac{\sin x}{x}=1

Definition 3. inferior limit and superior limit

limkxk:=limninfknxk\varliminf_{k \rightarrow \infty} x_{k}:=\lim _{n \rightarrow \infty} \inf _{k \geq n} x_{k}
limkxk:=limnsupknxk\varlimsup_{k \rightarrow \infty} x_{k}:=\lim _{n \rightarrow \infty} \sup _{k \geq n} x_{k}

Theorem 2. Stolz

Let (an)n1{\displaystyle (a{n}){n\geq 1}} and (bn)n1{\displaystyle (b{n}){n\geq 1}} be two sequences of real numbers. Assume that (bn)n1{\displaystyle (b{n}){n\geq 1}} is a strictly monotone and divergent sequence (i.e. strictly increasing and approaching+ {\displaystyle +\infty } , or strictly decreasing and approaching -\infty) and the following limit exists:

limnan+1anbn+1bn=l\lim_ {n\to \infty }{\frac {a_{n+1}-a_{n}}{b_{n+1}-b_{n}}}=l

Then, the limit

limnanbn=l \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=l

Theorem 3. Toeplitz limit theorem

Supports that n,kN+n,k\subseteq \mathbb N^{+},tnk0t_{nk}\geq0and

k=1ntnk=1,limntnk=0\sum_{k=1}^{n}{t_{nk}} = 1,\quad \lim_{n \rightarrow \infty}{t_{nk}} = 0

if limnan=a\lim_{n \rightarrow \infty}{a_{n}} = a , let xn=k=1ntnkak x_{n} = \sum_{k=1}^{n}{t_{nk}a_{k}}, s.t.

limnxn=a\lim_{n \rightarrow \infty}{x_{n}} = a

By using tnk=1nt_{nk}=\frac{1}{n}, we can quickly infer The Cauchy proposition theorem.

By using tnk=bk+1bkbn+1b1 t_{n k}=\frac{b_{k+1}-b_{k}}{b_{n+1}-b_{1}}, we can quickly infer The Stolz theorem.

Stirling's formula

Specifying the constant in the O(lnn)\mathcal O(\ln n) error term gives 12ln(2πn)\frac12 \ln(2\pi n), yielding the more precise formula:

n!2πn(ne)nn!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}

\blacksquare

Last updated

Was this helpful?